Nilai lim_(x→1)⁡ (tan⁡(x-1)sin⁡(1-√x))/(x^2-2x+1)=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x \to 1} \ \frac{\tan (x-1) \sin(1-\sqrt{x})}{x^2-2x+1} = \cdots \)

  1. -1
  2. \( -\frac{1}{3} \)
  3. 0
  4. \( -\frac{1}{2} \)
  5. 1

(UM UGM 2004)

Pembahasan:

\begin{aligned} \lim_{x \to 1} \ \frac{\tan (x-1) \sin(1-\sqrt{x})}{x^2-2x+1} &= \lim_{x \to 1} \ \frac{\tan (x-1) \sin(1-\sqrt{x})}{-(x-1)(1-x)} \\[8pt] &= \lim_{x \to 1} \ \frac{\tan (x-1) \sin(1-\sqrt{x})}{-(x-1)(1+\sqrt{x})(1-\sqrt{x})} \\[8pt] &= \lim_{x \to 1} \ \frac{1}{-(1+\sqrt{x})} \cdot \lim_{x \to 1} \ \frac{\tan(x-1)}{(x-1)} \cdot \lim_{x \to 1} \ \frac{\sin(1-\sqrt{x})}{(1-\sqrt{x})} \\[8pt] &= \frac{1}{-(1+\sqrt{1})} \cdot 1 \cdot 1 = -\frac{1}{2} \end{aligned}

Jawaban D.